
| Line: 1 to 1 | ||||||||
|---|---|---|---|---|---|---|---|---|
The Transportation Problem in AMPL | ||||||||
| Line: 23 to 23 | ||||||||
| param Cost {SUPPLY_NODES, DEMAND_NODES}; | ||||||||
| Changed: | ||||||||
| < < | Now, the mathematical proramme follows directly: | |||||||
| > > | Now, the mathematical programme follows directly: | |||||||
| Changed: | ||||||||
| < < | var Flow {i in SUPPLY_NODES, j in DEMAND_NODES} >= 0, integer; | |||||||
| > > | var Flow {SUPPLY_NODES, DEMAND_NODES} >= 0, integer; | |||||||
| minimize TotalCost: sum {i in SUPPLY_NODES, j in DEMAND_NODES} Cost[i, j] * Flow[i, j]; | ||||||||
| Line: 38 to 38 | ||||||||
| Note that we assume the transportation is balanced. | ||||||||
| Added: | ||||||||
| > > | Adding BoundsIn the main discussion of transportation problems, we saw that adding bounds to the flow variables allowed us to easily either bound the transportation of good from a supply node to a demand node or remove an arc from the problem altogether. We can add bounds to our AMPL formulation by declaring 2 new parameters with defaults:
param Lower {SUPPLY_NODES, DEMAND_NODES} integer default 0;
param Upper {SUPPLY_NODES, DEMAND_NODES} integer default Infinity;
and adding them to the Flow variable declaration:
var Flow {i in SUPPLY_NODES, j in DEMAND_NODES}
>= Lower[i, j], <= Upper[i, j], integer;
Balancing Transportation Problems | |||||||
| -- MichaelOSullivan - 02 Apr 2008 | ||||||||