Line: 1 to 1 | |||||||||
---|---|---|---|---|---|---|---|---|---|
| |||||||||
Added: | |||||||||
> > | <-- Ready to Review --> | ||||||||
%BEGINLATEXPREAMBLE% \usepackage{amsmath} \usepackage{amssymb} | |||||||||
Line: 115 to 117 | |||||||||
If the prices ![]() ![]() ![]() ![]() ![]() | |||||||||
Changed: | |||||||||
< < | One way to find this equilibrium point is to solve a [[VariationalInequalities][variational inequality]. Theorem 1 gives the necessary variational inequalities: | ||||||||
> > | One way to find this equilibrium point is to solve a [[https://en.wikipedia.org/wiki/Variational_inequality][variational inequality]. Theorem 1 gives the necessary variational inequalities: | ||||||||
Theorem 1: Variational Inequality The equilibrium state governing the supply chain model according to the optimality conditions of the supply chain mathematical programmes (?? REFLATEX{eq:manufacturer} not defined in eqn list ??), (?? REFLATEX{eq:retailer} not defined in eqn list ??) and (?? REFLATEX{eq:consumer} not defined in eqn list ??) is equivalent to the solution of the variational inequality problem given by: determine the equilibrium vectors of product shipments, shadow prices, and demand market prices ![]() | |||||||||
Added: | |||||||||
> > | |||||||||
%BEGINLATEX% \begin{equation*} \begin{split} | |||||||||
Line: 129 to 132 | |||||||||
\end{equation*} %ENDLATEX% | |||||||||
Added: | |||||||||
> > | Once the equilibrium state has been found the manufacturers' prices and the retailers' prices can be calculated:
| ||||||||
Return to top -- MichaelOSullivan - 31 Mar 2008 | |||||||||
Line: 165 to 172 | |||||||||
| |||||||||
Added: | |||||||||
> > |
|