Difference: DataFitting (1 vs. 10)

Revision 102018-11-23 - TWikiAdminUser

Line: 1 to 1
 
META TOPICPARENT name="SubmitCaseStudy"
<-- Ready to Review -->
Line: 93 to 93
 
FORM FIELD Conclusions Conclusions In conclusion...
FORM FIELD ExtraForExperts ExtraForExperts
|*FORM FIELD StudentTasks*|StudentTasks|
  1. Write AMPL files regression.mod and regression.run that use regression.dat to solve The Data Fitting Problem. Write a management summary of your solution. Be sure to indicate which of the functions fits the data best.

    What to hand in Your new AMPL files regression.mod and regression.run. Your management summary.

|
Deleted:
<
<
META FILEATTACHMENT attachment="latex871ec020967dc3b53d3b329cc0e111b6.png" attr="h" comment="" date="1203416375" name="latex871ec020967dc3b53d3b329cc0e111b6.png" stream="GLOB(0x8fef67c)" tmpFilename="latex871ec020967dc3b53d3b329cc0e111b6.png" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latex837377569336c677fb59606a9dcb04c1.png" attr="h" comment="" date="1203416375" name="latex837377569336c677fb59606a9dcb04c1.png" stream="GLOB(0x87c3e8c)" tmpFilename="latex837377569336c677fb59606a9dcb04c1.png" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latexe900814d818af12d92934d17a5eb1fed.png" attr="h" comment="" date="1203416375" name="latexe900814d818af12d92934d17a5eb1fed.png" stream="GLOB(0x8fefee0)" tmpFilename="latexe900814d818af12d92934d17a5eb1fed.png" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latex2c42907c743defcd93d2fff2b59d62a8.png" attr="h" comment="" date="1203416375" name="latex2c42907c743defcd93d2fff2b59d62a8.png" stream="GLOB(0x8fef94c)" tmpFilename="latex2c42907c743defcd93d2fff2b59d62a8.png" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latex20e1cc4422656d2946847e42bd9c1934.png" attr="h" comment="" date="1203416375" name="latex20e1cc4422656d2946847e42bd9c1934.png" stream="GLOB(0x8fef4e4)" tmpFilename="latex20e1cc4422656d2946847e42bd9c1934.png" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latex465886091365f311ad9d2a0e069a71e7.png" attr="h" comment="" date="1203416376" name="latex465886091365f311ad9d2a0e069a71e7.png" stream="GLOB(0x8fefc88)" tmpFilename="latex465886091365f311ad9d2a0e069a71e7.png" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latex3fd969b1220a7f1752dd733f3e651f23.png" attr="h" comment="" date="1203416376" name="latex3fd969b1220a7f1752dd733f3e651f23.png" stream="GLOB(0x8fefa60)" tmpFilename="latex3fd969b1220a7f1752dd733f3e651f23.png" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latex54524a70a68a43cd6227a154c4123445.png" attr="h" comment="" date="1203416376" name="latex54524a70a68a43cd6227a154c4123445.png" stream="GLOB(0x8efc5a8)" tmpFilename="latex54524a70a68a43cd6227a154c4123445.png" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latexdc67104a15b885b5c66d6b5dd957da84.png" attr="h" comment="" date="1203416376" name="latexdc67104a15b885b5c66d6b5dd957da84.png" stream="GLOB(0x8efc740)" tmpFilename="latexdc67104a15b885b5c66d6b5dd957da84.png" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latexa2a1c51ae440be88e5d62e8510bd7a95.png" attr="h" comment="" date="1203416376" name="latexa2a1c51ae440be88e5d62e8510bd7a95.png" stream="GLOB(0x8efc7ac)" tmpFilename="latexa2a1c51ae440be88e5d62e8510bd7a95.png" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latexd2a00fe0ca42ef2bb3e38b67c7b593a9.png" attr="h" comment="" date="1203416376" name="latexd2a00fe0ca42ef2bb3e38b67c7b593a9.png" stream="GLOB(0x8efc944)" tmpFilename="latexd2a00fe0ca42ef2bb3e38b67c7b593a9.png" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latex4c436eda0e59014aa758c6ab4c0f6694.png" attr="h" comment="" date="1203416376" name="latex4c436eda0e59014aa758c6ab4c0f6694.png" stream="GLOB(0x8efca4c)" tmpFilename="latex4c436eda0e59014aa758c6ab4c0f6694.png" user="LaurenJackson" version="1"
 
META FILEATTACHMENT attachment="regression.dat" attr="" comment="" date="1206491749" name="regression.dat" path="regression.dat" size="3749" stream="regression.dat" tmpFilename="" user="MichaelOSullivan" version="1"
Added:
>
>
META FILEATTACHMENT attachment="latex749f29959018cfcb91a1a1fa85382b43.png" attr="h" comment="" date="1542936584" name="latex749f29959018cfcb91a1a1fa85382b43.png" user="BaseUserMapping_333" version="1"
META FILEATTACHMENT attachment="latexa7d82bb4c3aae0dac877215c58c58688.png" attr="h" comment="" date="1542936584" name="latexa7d82bb4c3aae0dac877215c58c58688.png" user="BaseUserMapping_333" version="1"
META FILEATTACHMENT attachment="latexe13350cd085692fab8d21141ab71d4bb.png" attr="h" comment="" date="1542936584" name="latexe13350cd085692fab8d21141ab71d4bb.png" user="BaseUserMapping_333" version="1"
META FILEATTACHMENT attachment="latex0a3d2ca475a6545d9284f80681ebc6ff.png" attr="h" comment="" date="1542936584" name="latex0a3d2ca475a6545d9284f80681ebc6ff.png" user="BaseUserMapping_333" version="1"
META FILEATTACHMENT attachment="latexedcb089cf55cf071d19e68dd81c24560.png" attr="h" comment="" date="1542936584" name="latexedcb089cf55cf071d19e68dd81c24560.png" user="BaseUserMapping_333" version="1"
META FILEATTACHMENT attachment="latexc08ba70f377310c2b6dfa4467fa76755.png" attr="h" comment="" date="1542936584" name="latexc08ba70f377310c2b6dfa4467fa76755.png" user="BaseUserMapping_333" version="1"
META FILEATTACHMENT attachment="latexdc2858cef5d25e2f2367e0567a8b1e8e.png" attr="h" comment="" date="1542936584" name="latexdc2858cef5d25e2f2367e0567a8b1e8e.png" user="BaseUserMapping_333" version="1"
META FILEATTACHMENT attachment="latex9d40fac51addb407acfa344c920bce76.png" attr="h" comment="" date="1542936584" name="latex9d40fac51addb407acfa344c920bce76.png" user="BaseUserMapping_333" version="1"
META FILEATTACHMENT attachment="latexbb0adfec83b92482b775a53d11a83bb6.png" attr="h" comment="" date="1542936584" name="latexbb0adfec83b92482b775a53d11a83bb6.png" user="BaseUserMapping_333" version="1"
META FILEATTACHMENT attachment="latex5a170550a99efdda30836fee9a070088.png" attr="h" comment="" date="1542936584" name="latex5a170550a99efdda30836fee9a070088.png" user="BaseUserMapping_333" version="1"
META FILEATTACHMENT attachment="latex91128bb1f26049547bbd487b36bdf42d.png" attr="h" comment="" date="1542936585" name="latex91128bb1f26049547bbd487b36bdf42d.png" user="BaseUserMapping_333" version="1"
META FILEATTACHMENT attachment="latexde6e51d95313b29aba2c52450d72940b.png" attr="h" comment="" date="1542936585" name="latexde6e51d95313b29aba2c52450d72940b.png" user="BaseUserMapping_333" version="1"

Revision 92008-04-02 - MichaelOSullivan

Line: 1 to 1
 
META TOPICPARENT name="SubmitCaseStudy"
<-- Ready to Review -->
Line: 40 to 40
  Return to top
Changed:
<
<

Computational Model

>
>

Computational Model

 

The computational model...

Line: 48 to 48
  Return to top
Changed:
<
<

Results

>
>

Results

 

The results...

Line: 56 to 56
  Return to top
Changed:
<
<

Conclusions

>
>

Conclusions

 

In conclusion...

Revision 82008-03-26 - TWikiAdminUser

Line: 1 to 1
 
META TOPICPARENT name="SubmitCaseStudy"
<-- Ready to Review -->
Line: 105 to 105
 
META FILEATTACHMENT attachment="latexa2a1c51ae440be88e5d62e8510bd7a95.png" attr="h" comment="" date="1203416376" name="latexa2a1c51ae440be88e5d62e8510bd7a95.png" stream="GLOB(0x8efc7ac)" tmpFilename="latexa2a1c51ae440be88e5d62e8510bd7a95.png" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latexd2a00fe0ca42ef2bb3e38b67c7b593a9.png" attr="h" comment="" date="1203416376" name="latexd2a00fe0ca42ef2bb3e38b67c7b593a9.png" stream="GLOB(0x8efc944)" tmpFilename="latexd2a00fe0ca42ef2bb3e38b67c7b593a9.png" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latex4c436eda0e59014aa758c6ab4c0f6694.png" attr="h" comment="" date="1203416376" name="latex4c436eda0e59014aa758c6ab4c0f6694.png" stream="GLOB(0x8efca4c)" tmpFilename="latex4c436eda0e59014aa758c6ab4c0f6694.png" user="LaurenJackson" version="1"
Deleted:
<
<
META FILEATTACHMENT attachment="regression.dat.txt" attr="" comment="" date="1203421792" name="regression.dat.txt" path="C:\Users\Lauren Jackson\Documents\Desktop\Desktop stuff\Twiki\Twiki images\DataFitting\regression.dat.txt" size="2844" stream="C:\Users\Lauren Jackson\Documents\Desktop\Desktop stuff\Twiki\Twiki images\DataFitting\regression.dat.txt" tmpFilename="" user="LaurenJackson" version="1"
 
META FILEATTACHMENT attachment="regression.dat" attr="" comment="" date="1206491749" name="regression.dat" path="regression.dat" size="3749" stream="regression.dat" tmpFilename="" user="MichaelOSullivan" version="1"

Revision 72008-03-26 - MichaelOSullivan

Line: 1 to 1
 
META TOPICPARENT name="SubmitCaseStudy"
Changed:
<
<
<-- Under Construction -->
>
>
<-- Ready to Review -->
 

Revision 62008-03-01 - TWikiAdminUser

Line: 1 to 1
 
META TOPICPARENT name="SubmitCaseStudy"
<-- Under Construction -->
Line: 26 to 26
 

Operations Research Topics: NonlinearProgramming

Application Areas: Data Analysis

Contents

Changed:
<
<
>
>
 

Problem Description

Also known as The Least Squares Problem

When modelling data, scientists often want to fit an analytical model to their experimental data. In this case an experiment has provided some $(x, y)$-coordinates that have a growth curve shape, i.e., initially $y$ increases quickly with $x$, thens tails off to some maximum value. The scientists in this study have suggested three possible functions to model this behaviour:

  1. $y = f(x) \equiv \displaystyle\frac{1}{a x^2 + b x + c}$
  2. $y = f(x) \equiv a\log(x - b) + c$
  3. $y = f(x) \equiv a\sqrt{x - b} + c$

Given one of the possible functions $f(x)$ and the data points $(x_i, y_i), i=1, \ldots, n$ they want to find $a$, $b$ and $c$ to minimize the squared distance between the data points and the estimates, i.e.,

 \begin{equation*} \min_{a, b, c} \sum_{i=1}^n \left(y_i - f(x_i) \right)^2 \end{equation*}

The scientists have specified the number of data points and their coordinates in an AMPL data file regression.dat.

The scientists want to know which of the suggested functions provides the best fit to the data.

Line: 36 to 34
 Return to top

Problem Formulation

Changed:
<
<
The formulation...
>
>
The formulation...
  Return to top

Computational Model

Changed:
<
<
The computational model...
>
>
The computational model...
  Return to top

Results

Changed:
<
<
The results...
>
>
The results...
  Return to top

Conclusions

Changed:
<
<
In conclusion...
>
>
In conclusion...
  Return to top

Changed:
<
<
>
>
<--

-->

 

Changed:
<
<
>
>
<--
  1. Write AMPL files regression.mod and regression.run that use regression.dat to solve The Data Fitting Problem. Write a management summary of your solution. Be sure to indicate which of the functions fits the data best.

    What to hand in Your new AMPL files regression.mod and regression.run. Your management summary.

-->
 

Revision 52008-03-01 - TWikiAdminUser

Line: 1 to 1
 
META TOPICPARENT name="SubmitCaseStudy"
<-- Under Construction -->
Line: 26 to 26
 

Operations Research Topics: NonlinearProgramming

Application Areas: Data Analysis

Contents

Changed:
<
<

>
>
 

Problem Description

Also known as The Least Squares Problem

When modelling data, scientists often want to fit an analytical model to their experimental data. In this case an experiment has provided some $(x, y)$-coordinates that have a growth curve shape, i.e., initially $y$ increases quickly with $x$, thens tails off to some maximum value. The scientists in this study have suggested three possible functions to model this behaviour:

  1. $y = f(x) \equiv \displaystyle\frac{1}{a x^2 + b x + c}$
  2. $y = f(x) \equiv a\log(x - b) + c$
  3. $y = f(x) \equiv a\sqrt{x - b} + c$

Given one of the possible functions $f(x)$ and the data points $(x_i, y_i), i=1, \ldots, n$ they want to find $a$, $b$ and $c$ to minimize the squared distance between the data points and the estimates, i.e.,

 \begin{equation*} \min_{a, b, c} \sum_{i=1}^n \left(y_i - f(x_i) \right)^2 \end{equation*}

The scientists have specified the number of data points and their coordinates in an AMPL data file regression.dat.

The scientists want to know which of the suggested functions provides the best fit to the data.

Return to top

Changed:
<
<

Problem Formulation

>
>

Problem Formulation

 
Changed:
<
<
The formulation...
>
>
The formulation...
 
Changed:
<
<
Return to top

Computational Model

>
>
Return to top
 
Changed:
<
<
The computational model...
>
>

Computational Model

 
Changed:
<
<
Return to top

Results

>
>
The computational model...
 
Changed:
<
<
The results...
>
>
Return to top
 
Changed:
<
<
Return to top

Conclusions

>
>

Results

 
Changed:
<
<
In conclusion...
>
>
The results...
 
Changed:
<
<
Return to top
>
>
Return to top

Conclusions

In conclusion...

Return to top

 
Changed:
<
<
>
>
 
Changed:
<
<
>
>
 
Changed:
<
<
>
>
 
Changed:
<
<

Student Tasks

>
>
 
Changed:
<
<
  1. Write AMPL files regression.mod and regression.run that use regression.dat to solve The Data Fitting Problem. Write a management summary of your solution. Be sure to indicate which of the functions fits the data best.

    What to hand in Your new AMPL files regression.mod and regression.run. Your management summary.

>
>
 
Changed:
<
<
Return to top
>
>
 

META FORM name="OpsRes.CaseStudyForm"
FORM FIELD Title Title DataFitting
FORM FIELD DateSubmitted DateSubmitted 19 Feb 2008
Added:
>
>
FORM FIELD CaseStudyType CaseStudyType DIYCaseStudy
 
FORM FIELD OperationsResearchTopics OperationsResearchTopics NonlinearProgramming
FORM FIELD ApplicationAreas ApplicationAreas Data Analysis
|*FORM FIELD ProblemDescription*|ProblemDescription|*THE DATA FITTING PROBLEM*

Also known as The Least Squares Problem

When modelling data, scientists often want to fit an analytical model to their experimental data. In this case an experiment has provided some $(x, y)$-coordinates that have a growth curve shape, i.e., initially $y$ increases quickly with $x$, thens tails off to some maximum value. The scientists in this study have suggested three possible functions to model this behaviour:

  1. $y = f(x) \equiv \displaystyle\frac{1}{a x^2 + b x + c}$
  2. $y = f(x) \equiv a\log(x - b) + c$
  3. $y = f(x) \equiv a\sqrt{x - b} + c$

Given one of the possible functions $f(x)$ and the data points $(x_i, y_i), i=1, \ldots, n$ they want to find $a$, $b$ and $c$ to minimize the squared distance between the data points and the estimates, i.e.,

 \begin{equation*} \min_{a, b, c} \sum_{i=1}^n \left(y_i - f(x_i) \right)^2 \end{equation*}

The scientists have specified the number of data points and their coordinates in an AMPL ??? LINK data file =regression.dat=.

The scientists want to know which of the suggested functions provides the best fit to the data.|

Revision 42008-02-23 - MichaelOSullivan

Line: 1 to 1
 
META TOPICPARENT name="SubmitCaseStudy"
Added:
>
>
<-- Under Construction -->
 

Revision 32008-02-19 - LaurenJackson

Line: 1 to 1
 
META TOPICPARENT name="SubmitCaseStudy"

Revision 22008-02-19 - LaurenJackson

Line: 1 to 1
 
META TOPICPARENT name="SubmitCaseStudy"

Revision 12008-02-19 - LaurenJackson

Line: 1 to 1
Added:
>
>
META TOPICPARENT name="SubmitCaseStudy"
<--
This template controls both the look and functionality of case study topics.
You should not need to alter the layout, only edit the data using the form above.

Set the view and edit templates: Comment out the next line to use the TWiki default view

Comment out the next line to use the TWiki default edit -->

<--
This topic can only be changed by:  
-->

Case Study: DataFitting

Submitted: 19 Feb 2008

Operations Research Topics: NonlinearProgramming

Application Areas: Data Analysis

Contents

Problem Description

Also known as The Least Squares Problem

When modelling data, scientists often want to fit an analytical model to their experimental data. In this case an experiment has provided some $(x, y)$-coordinates that have a growth curve shape, i.e., initially $y$ increases quickly with $x$, thens tails off to some maximum value. The scientists in this study have suggested three possible functions to model this behaviour:

  1. $y = f(x) \equiv \displaystyle\frac{1}{a x^2 + b x + c}$
  2. $y = f(x) \equiv a\log(x - b) + c$
  3. $y = f(x) \equiv a\sqrt{x - b} + c$

Given one of the possible functions $f(x)$ and the data points $(x_i, y_i), i=1, \ldots, n$ they want to find $a$, $b$ and $c$ to minimize the squared distance between the data points and the estimates, i.e.,

 \begin{equation*} \min_{a, b, c} \sum_{i=1}^n \left(y_i - f(x_i) \right)^2 \end{equation*}

The scientists have specified the number of data points and their coordinates in an AMPL data file regression.dat.

The scientists want to know which of the suggested functions provides the best fit to the data.

Return to top

Problem Formulation

The formulation...

Return to top

Computational Model

The computational model...

Return to top

Results

The results...

Return to top

Conclusions

In conclusion...

Return to top

Student Tasks

  1. Write AMPL files regression.mod and regression.run that use regression.dat to solve The Data Fitting Problem. Write a management summary of your solution. Be sure to indicate which of the functions fits the data best.

    What to hand in Your new AMPL files regression.mod and regression.run. Your management summary.

Return to top

META FORM name="OpsRes.CaseStudyForm"
FORM FIELD Title Title DataFitting
FORM FIELD DateSubmitted DateSubmitted 19 Feb 2008
FORM FIELD OperationsResearchTopics OperationsResearchTopics NonlinearProgramming
FORM FIELD ApplicationAreas ApplicationAreas Data Analysis
|*FORM FIELD ProblemDescription*|ProblemDescription|*THE DATA FITTING PROBLEM*

Also known as The Least Squares Problem

When modelling data, scientists often want to fit an analytical model to their experimental data. In this case an experiment has provided some $(x, y)$-coordinates that have a growth curve shape, i.e., initially $y$ increases quickly with $x$, thens tails off to some maximum value. The scientists in this study have suggested three possible functions to model this behaviour:

  1. $y = f(x) \equiv \displaystyle\frac{1}{a x^2 + b x + c}$
  2. $y = f(x) \equiv a\log(x - b) + c$
  3. $y = f(x) \equiv a\sqrt{x - b} + c$

Given one of the possible functions $f(x)$ and the data points $(x_i, y_i), i=1, \ldots, n$ they want to find $a$, $b$ and $c$ to minimize the squared distance between the data points and the estimates, i.e.,

 \begin{equation*} \min_{a, b, c} \sum_{i=1}^n \left(y_i - f(x_i) \right)^2 \end{equation*}

The scientists have specified the number of data points and their coordinates in an AMPL ??? LINK data file =regression.dat=.

The scientists want to know which of the suggested functions provides the best fit to the data.|

FORM FIELD ProblemFormulation ProblemFormulation The formulation...
FORM FIELD ComputationalModel ComputationalModel The computational model...
FORM FIELD Results Results The results...
FORM FIELD Conclusions Conclusions In conclusion...
FORM FIELD ExtraForExperts ExtraForExperts
|*FORM FIELD StudentTasks*|StudentTasks| 1 Write AMPL files regression.mod and regression.run that use regression.dat to solve The Data Fitting Problem. Write a management summary of your solution. Be sure to indicate which of the functions fits the data best.

What to hand in Your new AMPL files regression.mod and regression.run. Your management summary. |

META FILEATTACHMENT attachment="Regression_Data.rtf" attr="" comment="" date="1203415499" name="Regression_Data.rtf" path="C:\Users\Lauren Jackson\Documents\Desktop\Desktop stuff\Twiki\Twiki images\DataFitting\Regression Data.rtf" size="3617" stream="C:\Users\Lauren Jackson\Documents\Desktop\Desktop stuff\Twiki\Twiki images\DataFitting\Regression Data.rtf" tmpFilename="" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latex871ec020967dc3b53d3b329cc0e111b6.png" attr="h" comment="" date="1203416375" name="latex871ec020967dc3b53d3b329cc0e111b6.png" stream="GLOB(0x8fef67c)" tmpFilename="latex871ec020967dc3b53d3b329cc0e111b6.png" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latex837377569336c677fb59606a9dcb04c1.png" attr="h" comment="" date="1203416375" name="latex837377569336c677fb59606a9dcb04c1.png" stream="GLOB(0x87c3e8c)" tmpFilename="latex837377569336c677fb59606a9dcb04c1.png" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latexe900814d818af12d92934d17a5eb1fed.png" attr="h" comment="" date="1203416375" name="latexe900814d818af12d92934d17a5eb1fed.png" stream="GLOB(0x8fefee0)" tmpFilename="latexe900814d818af12d92934d17a5eb1fed.png" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latex2c42907c743defcd93d2fff2b59d62a8.png" attr="h" comment="" date="1203416375" name="latex2c42907c743defcd93d2fff2b59d62a8.png" stream="GLOB(0x8fef94c)" tmpFilename="latex2c42907c743defcd93d2fff2b59d62a8.png" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latex20e1cc4422656d2946847e42bd9c1934.png" attr="h" comment="" date="1203416375" name="latex20e1cc4422656d2946847e42bd9c1934.png" stream="GLOB(0x8fef4e4)" tmpFilename="latex20e1cc4422656d2946847e42bd9c1934.png" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latex465886091365f311ad9d2a0e069a71e7.png" attr="h" comment="" date="1203416376" name="latex465886091365f311ad9d2a0e069a71e7.png" stream="GLOB(0x8fefc88)" tmpFilename="latex465886091365f311ad9d2a0e069a71e7.png" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latex3fd969b1220a7f1752dd733f3e651f23.png" attr="h" comment="" date="1203416376" name="latex3fd969b1220a7f1752dd733f3e651f23.png" stream="GLOB(0x8fefa60)" tmpFilename="latex3fd969b1220a7f1752dd733f3e651f23.png" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latex54524a70a68a43cd6227a154c4123445.png" attr="h" comment="" date="1203416376" name="latex54524a70a68a43cd6227a154c4123445.png" stream="GLOB(0x8efc5a8)" tmpFilename="latex54524a70a68a43cd6227a154c4123445.png" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latexdc67104a15b885b5c66d6b5dd957da84.png" attr="h" comment="" date="1203416376" name="latexdc67104a15b885b5c66d6b5dd957da84.png" stream="GLOB(0x8efc740)" tmpFilename="latexdc67104a15b885b5c66d6b5dd957da84.png" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latexa2a1c51ae440be88e5d62e8510bd7a95.png" attr="h" comment="" date="1203416376" name="latexa2a1c51ae440be88e5d62e8510bd7a95.png" stream="GLOB(0x8efc7ac)" tmpFilename="latexa2a1c51ae440be88e5d62e8510bd7a95.png" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latexd2a00fe0ca42ef2bb3e38b67c7b593a9.png" attr="h" comment="" date="1203416376" name="latexd2a00fe0ca42ef2bb3e38b67c7b593a9.png" stream="GLOB(0x8efc944)" tmpFilename="latexd2a00fe0ca42ef2bb3e38b67c7b593a9.png" user="LaurenJackson" version="1"
META FILEATTACHMENT attachment="latex4c436eda0e59014aa758c6ab4c0f6694.png" attr="h" comment="" date="1203416376" name="latex4c436eda0e59014aa758c6ab4c0f6694.png" stream="GLOB(0x8efca4c)" tmpFilename="latex4c436eda0e59014aa758c6ab4c0f6694.png" user="LaurenJackson" version="1"
 
This site is powered by the TWiki collaboration platform Powered by PerlCopyright © 2008-2020 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback