Difference: CokeSupplyChain (17 vs. 18)

Revision 182008-04-28 - MichaelOSullivan

Line: 1 to 1
 
META TOPICPARENT name="SubmitCaseStudy"
<-- Ready to Review -->
Line: 87 to 87
 
FORM FIELD CaseStudyType CaseStudyType DIYCaseStudy
FORM FIELD OperationsResearchTopics OperationsResearchTopics LinearProgramming, IntegerProgramming, MasterSlaveConstraints, FacilityLocationProblem
FORM FIELD ApplicationAreas ApplicationAreas Logistics, Industrial Planning, Fuel Manufacturing
Changed:
<
<
|*FORM FIELD ProblemDescription*|ProblemDescription|*THE COKE PRODUCTION PROBLEM*

Adapted from a real-world problem

Over 29% of world's coke is made in China. Recently market liberalization has lead to town and village enterprises, with uncertainty in future markets resulting in short-sighted resource use. There are currently many small cokemaking plants with relatively primitive technology. This has resulted in an industry with low transportation costs (as coke is supplied by many small local producers) but high pollution and energy use.

Figure 1 Coke from en.wikipedia.org/wiki/Image:Koks_Brennstoff.jpg

800px-Koks_Brennstoff.jpg

The government wants to move cokemaking to Shanxi, where they can establish bigger facilities. This plan will be more efficient, with less pollution, but will also result in higher transport costs (calculated from a GIS database). The plants in Shanxi will be built with one or more oven batteries, each making 75,000 tonnes of coke a year. The process these plants will use to convert coal to coke is "thermal decomposition". This process results in 1 tonne of coke produced for every 1.3 tonnes of coal processed.

The (simplified) problem we will model has the following details:

  1. There are six coal mines, each able to supply up to a certain amount of coal each year to the plants for processing
  2. There are six customers, each with a certain demand for coke each year
  3. There are six possible plant locations, each able to process a certain amount of coke each year

coke_map.jpg

Each plant has 6 possible sizes, with coke processing levels and associated construction costs shown below:

Size Cost
(kT/yr) (MRMB)
75 4.4
150 7.4
225 10.5
300 13.5
375 16.5
450 19.6

Each Mine has the following coal supply per year:

Mine 1 2 3 4 5 6
Coal Supply (kT/yr) 25.8 728 1456 40 36.9 1100

Each Customer has the following coke demand per year:

Customer 1 2 3 4 5 6
Coke Demand (kT/yr) 83 5.5 6.975 5.5 720.75 5.5

The transportation costs (RMB/kT) between the mines and the plants are as follows:

RMB/kT Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 Plant 6
Mine 1 231737 46813 79337 195845 103445 45186
Mine 2 179622 267996 117602 200298 128184 49046
Mine 3 45170 93159 156241 218655 103802 119616
Mine 4 149925 254305 76423 123534 151784 104081
Mine 5 152301 205126 24321 66187 195559 88979
Mine 6 223934 132391 51004 122329 222927 54357

The transportation costs (RMB/kT) between the plants and the customers are as follows:

RMB/kT Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 Plant 6
Customer 1 6736 42658 70414 45170 184679 111569
Customer 2 217266 227190 249640 203029 153531 117487
Customer 3 35936 28768 126316 2498 130317 74034
Customer 4 73446 52077 108368 75011 49827 62850
Customer 5 174664 177461 151589 153300 59916 135162
Customer 6 186302 189099 147026 164938 149836 286307  
>
>
|*FORM FIELD ProblemDescription*|ProblemDescription|*Adapted from a real-world problem*

Over 29% of world's coke is made in China. Recently market liberalization has lead to town and village enterprises, with uncertainty in future markets resulting in short-sighted resource use. There are currently many small cokemaking plants with relatively primitive technology. This has resulted in an industry with low transportation costs (as coke is supplied by many small local producers) but high pollution and energy use.

Figure 1 Coke from en.wikipedia.org/wiki/Image:Koks_Brennstoff.jpg

800px-Koks_Brennstoff.jpg

The government wants to move cokemaking to Shanxi, where they can establish bigger facilities. This plan will be more efficient, with less pollution, but will also result in higher transport costs (calculated from a GIS database). The plants in Shanxi will be built with one or more oven batteries, each making 75,000 tonnes of coke a year. The process these plants will use to convert coal to coke is "thermal decomposition". This process results in 1 tonne of coke produced for every 1.3 tonnes of coal processed.

The (simplified) problem we will model has the following details:

  1. There are six coal mines, each able to supply up to a certain amount of coal each year to the plants for processing
  2. There are six customers, each with a certain demand for coke each year
  3. There are six possible plant locations, each able to process a certain amount of coke each year

coke_map.jpg

Each plant has 6 possible sizes, with coke processing levels and associated construction costs shown below:

Size
<-- -->
Sorted descending
Cost
(kT/yr) (MRMB)
450 19.6
375 16.5
300 13.5
225 10.5
150 7.4
75 4.4

Each Mine has the following coal supply per year:

Mine 1 2 3 4 5 6
Coal Supply (kT/yr) 25.8 728 1456 40 36.9 1100

Each Customer has the following coke demand per year:

Customer 1 2 3 4 5 6
Coke Demand (kT/yr) 83 5.5 6.975 5.5 720.75 5.5

The transportation costs (RMB/kT) between the mines and the plants are as follows:

RMB/kT Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 Plant 6
Mine 1 231737 46813 79337 195845 103445 45186
Mine 2 179622 267996 117602 200298 128184 49046
Mine 3 45170 93159 156241 218655 103802 119616
Mine 4 149925 254305 76423 123534 151784 104081
Mine 5 152301 205126 24321 66187 195559 88979
Mine 6 223934 132391 51004 122329 222927 54357

The transportation costs (RMB/kT) between the plants and the customers are as follows:

RMB/kT Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 Plant 6
Customer 1 6736 42658 70414 45170 184679 111569
Customer 2 217266 227190 249640 203029 153531 117487
Customer 3 35936 28768 126316 2498 130317 74034
Customer 4 73446 52077 108368 75011 49827 62850
Customer 5 174664 177461 151589 153300 59916 135162
Customer 6 186302 189099 147026 164938 149836 286307  
 
FORM FIELD ProblemFormulation ProblemFormulation The formulation...
FORM FIELD ComputationalModel ComputationalModel The computational model...
FORM FIELD Results Results The results...
 
This site is powered by the TWiki collaboration platform Powered by PerlCopyright © 2008-2021 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback